DATA HANDBOOK

Quartz Oscillators

Philips Components

PHILIPS

0 0 K

Contents

	page
SELECTION GUIDE	
Survey of types	4
Introduction	4
Terms and definitions	5
Type selection	6
Quartz crystal clock oscillator (XO)	8
Voltage controlled quartz crystal oscillators (VCXO)	14
Voltage controlled and temperature compensated quartz crystal oscillators (VTCXO)	36
Temperature compensated quartz crystal oscillators (TCXO)	41
Digitally temperature compensated quartz crystal oscillators (DTCXO)	88
Temperature sensoring quartz crystal oscillators (TSO)	92

1

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

General Introduction

SURVEY OF TYPES

Table 1

TYPE	NOMINAL FREQUENCY (kHz)	TEMPERATURE RANGE (°C)	SUPPLY VOLTAGE (V)
ХО	1 000 to 70 000	0 to +70	5 ±10%
XOHC	1 000 to 50 000	0 to +70	5 ±10%
VCXO	1 000 to 31 000	−5 to +70	5 ±5%
VTCXO	8 000 to 16 000	-30 to +80	5 ±5%
TCXO	4 000 to 50 000	-40 to +85	5 or 12
DTCXO	4 000 to 15 000	-40 to +85	5 ±5%
TSO	0.250 to 750	-40 to +85	5 ±10%

GENERAL INTRODUCTION

For practical reasons, technical information on piezo-electric quartz devices is separated into three parts:

PA07 - Quartz crystals for industrial and special applications

PA10 - Quartz crystals for automotive and standard applications

PA11 - Quartz oscillators

The quartz crystal controlled oscillators consist in general of a quartz crystal and an oscillator circuit, packaged together in a hermetically sealed encapsulation. When connected to an appropriate supply voltage, the oscillator produces an output signal with a certain waveform and frequency. For applications where a high frequency stability is required, a temperature compensating network is added to the oscillator circuit which reduces the original temperature drift of the quartz crystal unit with a factor of 20 to 60. The range of quartz controlled oscillators comprise the following main groups:

Quartz crystal clock oscillator (XO)

The XO's and XOHC's are small oscillators in a DIL-14/4 encapsulation without temperature compensation. The output characteristic is designed for TTL and HCMOS - level applications with symmetric waveform.

Microprocessor and logic circuitry are typical applications for XO's and XOHC's.

Voltage controlled quartz crystal oscillators (VCXO)

A VCXO is a crystal oscillator the frequency of which can be changed by means of a control voltage. The relation between frequency and control voltage approaches a straight line. They feature LS-TTL and HCMOS output compatibility. VCXO's are specially suitable for phase locked loop applications as used in ISDN multiplex equipment.

Voltage controlled and temperature compensated quartz crystal oscillators (VTCXO)

These oscillators can be tuned electrically by means of a DC voltage, or can be modulated by an AC voltage while the circuit is electronically temperature

compensated. Excellent fitting in portable telephones.

Temperature compensated quartz crystal oscillators (TCXO)

In the TCXO's an analog circuit is incorporated which compensates the temperature influence on the frequency stability of the oscillator. TCXOs are available with stability figures of ±1 to ±3 x10-6. Oscillators of this type are used e.g. in measuring and communication equipment.

Digitally temperature compensated quartz crystal oscillators (DTCXO)

The DTCXO is the latest development in temperature compensated crystal oscillator design. Temperature compensation is carried out by means of a digital circuit and is based upon the following principle: A memory chip contains a table with temperature correction data for both crystal and oscillator over the quartz crystal temperature range, e.g. —40 to +85 °C.

The memory is adressed by a digital (quartz) thermometer. So at each temperature within this range, a particular memory cell contains the

General Introduction

SUPPLY CURRENT (mA)	FREQUENCY STABILITY (± x10-6)	ADJUSTMENT FACILITY	OUTPUT COMPATIBILITY
30 to 50	±100	none	TTL ''
4 to 25	±100	none	HCMOS
6 to 12.5	±20	control voltage	HCMOS
4 to 15	±1	external variable capacitor or resistor	sinewave semi-TTL or HCMOS
2.5	±1.5	control voltage	clipped sinewave
15	±0.5	external variable resistor	LS-TTL or HCMOS
2.5	N.A.	none	HCMOS

specific correction factor to keep the output frequency within very close tolerances.

Oscillators of this type show a frequency stability of $<\pm0.5 \times 10^6$ in the temperature range of -40 to +85 °C.

DTCXO's are used in high-professional equipment especially where high frequency stability combined with low power consumption, small dimensions and no warming-up time is required.

Temperature sensoring quartz crystal oscillators (TSO)

In the TSO the frequency is a function of the temperature. For this oscillator a special crystal cut is used with a high sensitivity for temperature changes. The temperature information is available in a digital format so no Analog Digital Conversion is needed. The TSO's are used as temperature sensing devices in measurement and industrial equipment e.g. for correction of measurement-errors caused by ambient temperature changes.

TERMS AND DEFINITIONS

Nominal frequency

The frequency assigned to the oscillator when operated under specified conditions.

Frequency offset

The frequency difference, positive or negative, which should be added to the specified nominal frequency of the oscillator, when adjusting the oscillator frequency at +25 °C, in order to minimize it's deviation from nominal frequency over the specified operating temperature.

Frequency tuning range

Frequency tuning range is the range over which the oscillator frequency may be varied by means of an external resistor or by an external capacitance for the purpose of:

Setting the frequency to a particular value e.g. to give a frequency offset.

Correcting the oscillator frequency after deviation due to ageing or other changed conditions.

Operating temperature range

The temperature range over which the oscillator shall function, maintaining frequency and other output signal attributes within specified tolerances.

Operable temperature range

The temperature range over which the oscillator shall continue to provide an output signal, though not within the specified tolerances of frequency, level, waveform, etc.

Storage temperature range

The temperature range within the (non operating) oscillator may be stored for a prolonged time without any damage.

Frequency ageing

The relationship between oscillator frequency and time. This long-term frequency drift is caused by secular changes in the quartz crystal and/or other elements of the oscillator circuit, and is expressed as fractional change in mean frequency per specified time interval (e.g. ±1 x10-6 per year).

General Introduction

Table 2 Crystal clock oscillators - Type selection

TYPE	NOMINAL FREQUENCY (kHz)	TEMPERATURE RANGE (°C)	SUPPLY VOLTAGE (V)
ХО	1 000 to 70 000	0 to +70	5
XOHC	1 000 to 50 000	0 to +70	5

Table 3 Voltage controlled crystal oscillators - Type selection

TYPE	FREQUENCY RANGE (kHz)	TEMPERATURE RANGE (°C)	SUPPLY VOLTAGE (V)
VCO 2	7 000 to 21 000	-5 to +60	5 ±5%
VCO 3	1 000 to 10 000	−5 to +55	5 ±5%
VCO 4	7 000 to 17 000	0 to +70	5 ±5%
VCO 5	17 000 to 31 000	0 to +70	5 ±5%
VCO 6	7 000 to 17 000	0 to +60	5 ±5%
VCO 7	7 000 to 27 000	0 to +70	5 ±5%

Table 4 Temperature compensated crystal oscillator - Type selection

TYPE HR PACKAGE		FREQUENCY RANGE (kHz)	SUPPLY VOLTAGE (V)
TC201	B2	4 000 to 20 000	5 to 12
TC202	B2	4 000 to 20 000	5
TC301	B3	4 500 to 15 000	12
TC302	B3	4 500 to 12 000	12
TC303	B3	4 000 to 20 000	12
TC304	B3	4 000 to 20 000	12
TC305	B3	20 000 to 50 000	12
TC501	B5	6 000 to 20 000	5
TC502	B5	6 000 to 20 000	5
TC601	B6	6 000 to 20 000	5
TC602	B6	6 000 to 20 000	5

Table 5 Voltage controlled temperature compensated crystal oscillator

TYPE HR	PACKAGE	FREQUENCY RANGE (kHz)	SUPPLY VOLTAGE (V)
VTCO1	B8	8 000 to 16 000	5
VTCO2	B8	8 000 to 16 000	5
VTCO3	B8	8 000 to 16 000	5
VTCO4	B8	8 000 to 16 000	5

General Introduction

SUPPLY CURRENT (mA)	FREQUENCY STABILITY (± x10-6)	MAXIMUM HEIGHT OVER PCB (mm)	OUTPUT COMPATIBILITY
30 to 50	±100	6.5	T.T.L.
4 to 25	±100	6.5	HCMOS

SUPPLY CURRENT (mA)	CONTROL VOLTAGE (V)	FREQUENCY STABILITY (± x10-6)	MAXIMUM HEIGHT OVER PCB (mm)	OUTPUT COMPATIBILITY
6	-5 to +5	±20	7.3	HCMOS
6	-4 to +4	±20	7.3	HCMOS
6	0.5 to 4.5	±25	7.3	HCMOS
12.5	0.5 to 4.5	±20	10.9	HCMOS
9	1.0 to 4.0	±10	10.9	HCMOS
6	0.5 to 4.5	±25	9.0	HCMOS

TEMPERATURE RANGE (°C)	FREQUENCY STABILITY (± x10-6)	ADJUSTMENT FACILITY	OUTPUT COMPATIBILITY	PAGE
-40 to +85	±1.0	variable R	sine	41
-40 to +85	±1.0	variable R	semi T.T.L.	45
-20 to +70	±2.0	variable C	sine	49
-20 to +70	±2	variable R	sine	54
-40 to +85	±1	variable C	sine	59
-40 to +85	±1	variable R	sine	63
−20 to +70	±2	variable C	sine	67
-40 to +85	±1.0	variable R	sine	72
-40 to +85	±1.0	variable R	semi T.T.L.	76
-20 to +70	±1.0	variable R	sine	80
-20 to +70	±1.0	variable R	semi T.T.L.	84

SUPPLY CURRENT (mA)	FREQ. DEVIATION IN x10-6 IN TEMP. RANGE -30/+80 °C	FREQ. DEVIATION VS VOC CHANGES 5 V ±5% (x10-6)	FREQ. MODULATION x10 ⁻⁶
3 max.	±1.5	±0.2	±4.0
3 max.	±2.5	±0.3	±7.0
3 max.	±4.0	±0.5	±19.0

	Data sheet	
status	Product specification	
date of issue	March 1991	

9922 515 71 series Crystal clock oscillator Type XO

DESCRIPTION

The XO comprises a quartz crystal and an oscillator assembled together on a film substrate. The assembly is encapsulated in a hermetically sealed metal housing. The package has four connecting pins with pin spacing compatible with 14-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Microprocessors
- · Measuring equipment
- · Medical equipment
- · Electronic timers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	1000	70000	kHz
Δf/f	frequency stability (all effects and tolerances included)	-100	+100	x 10 ⁻⁶
T _{op}	operating temperature range	0	+70	°C
Vcc	supply voltage	4.5	5.5	٧
n	fan-out	-	10	TTL load
	mass	-	4.5	g

Crystal clock oscillator Type XO

9922 515 71 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range	square wave output	1000	-	70000	kHz
Δf/f	frequency stability	all effects and tolerances included	-100	-	+100	x 10−6
Vcc	supply voltage	pin 14 to pin 7	4.5	5	5.5	V
Icc	supply current	f = 1000 to 8000 kHz f = 8000 to 40000 kHz f = 40000 to 70000 kHz	-		50 40 55	mA mA mA
Vosc	oscillator output	see note	T -	TTL	1 -	-
	duty cycle	1.4 V level; T _o = 25 °C	40		60	%
n	fan-out		- ***	-	10	TTL load
T _{op}	operating temperature range		0	-	70	°C
T _{stg}	storage temperature range		-55	-	+125	°C
tr, tf	rise, fall time	0.4 - 2.4 V		5	T-	ns
t _{st}	start up time	1 - 40 MHz 40 - 70 MHz	-	=	10 15	ms ms

Note to the electrical data

Output options like tri-state, enable/disable are available on request.

MECHANICAL DATA

Product specification

Crystal clock oscillator Type XO

9922 515 71 series

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	n. c. or control input
GND	7	ground (case)
Vosc	8	oscillator output
V _{CC}	14	supply voltage

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+25 to +55 °C 6 cycles at > 95% R.H.	$\Delta f/f \le \pm 5 \times 10^{-6}$
Ea	shock	100 g half-sine 6 directions 1 blow/direction	$\Delta f/f \le \pm 5 \times 10^{-6}$
Ed	free fall	250 mm on hard wood	
Fc	vibration	frequency 10-500 Hz acceleration 20 g 3 directions 30 min.	no damage Δf/f ≤ ± 5 x 10 ⁻⁶
Nb	rapid change of temperature	1 h –40 °C/1 h +85 °C 10 cycles	no damage $\Delta f/f \le \pm 5 \times 10^{-6}$
Qc	sealing gross leak	method 1	no bubbles
Та	solderability	235 ± 5 °C 2 ± 0.5 s	good tinning, except for 1 mm from body
Tb-1a	resistance to soldering heat	260 ± 5 °C 10 ± 1 s	$\Delta f/f \le \pm 5 \times 10^{-6}$
IEC 679-1	ageing	storage for 1000 h at +70 °C	$\Delta f/f \le \pm 10 \times 10^{-6}$

cation

9922 515 72 series Crystal clock oscillator Type XOHC

DESCRIPTION

The XOHC comprises a quartz crystal and an oscillator assembled together on a substrate. The assembly is encapsulated in a hermetically sealed metal housing. The package has four connecting pins with pin spacing compatible with 14-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Microprocessors
- · Measuring equipment

11

- Medical equipment
- · Electronic timers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	1000	50000	kHz
Δf/f	frequency stability (all effects and tolerances included)	- 100	+100	x 10 ⁻⁶
T _{op}	operating temperature range	0	+70	°C
Vcc	supply voltage	4.5	5.5	V
n	fan-out	-	15 10	LSTTL load HCMOS load
	mass	-	4.5	g

March 1991

Crystal clock oscillator Type XOHC

9922 515 72 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f	frequency range	square wave output	1000	-	50000	kHz
Δf/f	frequency stability	all effects and tolerances included	-100	-	+100	x 10 ⁻⁶
V _{CC}	supply voltage	pin 14 to pin 7	4.5	5	5.5	V
Icc	supply current	f = 1000 to 8000 kHz	-	-	15	mA
		f = 8000 to 20000 kHz	-	-	20	mA
		f = 20000 to 50000 kHz		-	30	mA
Vosc	oscillator output	see note	- ,	HCMOS	-	-
	duty cycle	50% V _{cc} level; T _o = 25 °C	40	-	60	%
n	fan-out		-	-	15	LSTTL load
			-	-	10	HCMOS load
T _{op}	operating temperature range		0	-	70	ပ္
T _{stg}	storage temperature range		-55		+125	°C
t _r ,t _f	rise, fall time	15 pF load	-	5		ns
t _{st}	start up time	1 - 40 MHz 40 - 50 MHz	-	-	10 15	ms ms

Note to electrical data

Output options like tristate, enable/disable are available on request.

MECHANICAL DATA

Crystal clock oscillator Type XOHC

9922 515 72 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{contr}	1	n.c. or control input
GND	7	ground (case)
Vosc	8	oscillator output
V _{CC}	14	supply voltage

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp-heat	+25 to +55 °C 6 cycles at > 95% R.H.	$\Delta f/f \le \pm 5 \times 10^{-6}$
Ea	shock	100 g half-sine 6 directions 1 blow/direction	$\Delta f/f \le \pm 5 \times 10^{-6}$
Ed	free fall	250 mm on hard wood	
Fc	vibration	frequency 10-500 Hz acceleration 20 g 3 directions 30 min.	no damage $\Delta f/f \le \pm 5 \times 10^{-6}$
Nb	rapid change of temperature	1 h –40 °C/1 h +85 °C 10 cycles	no damage $\Delta f/f \le \pm 5 \times 10^{-6}$
Qc	sealing gross leak	method 1	no bubbles
Та	solderability	235 ± 5 °C 2 ± 0.5 s	good tinning, except for 1 mm from body
Tb-1a	resistance to soldering heat	260 ± 5 °C 10 ± 1 s	$\Delta f/f \le \pm 5 \times 10^{-6}$
Δf/f	ageing	storage for 1000 h at +70 °C	$\Delta f/f \le \pm 10x \ 10^{-6}$

13

Data sheet		
status	Product specification	
date of issue	March 1991	

9922 515 602 seriesVoltage controlled crystal oscillator Type VCO 2

DESCRIPTION

The type VCO 2 voltage controlled oscillator comprises a quartz crystal and two HCMOS integrated circuits assembled together in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has four connecting pins with pin spacing compatible with 14-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range	7000	-	21000	kHz
Δf/f	frequency stability (all effects and tolerances included)	-	-	± 45	x 10 ⁻⁶
V _{CC}	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	-5	-	+5	V
Z_{L}	output load	-	-	3	TTL load
T _{op}	operating temperature range	- 5	-	+60	°C
	mass	-	3.9	-	g

Philips Components Product specification

Voltage controlled crystal oscillator Type VCO 2

9922 515 602 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating co	onditions					
Vcc	supply voltage		4.75	5	5.25	V
Icc	supply current	note 1, 7-17 mHz 17-21 mHz	-	6 10	10 -	mA mA
V _{contr}	control voltage range		-5	0.0	+5	V
Z _L	output load (fan out)	15 pF to GND	-	-	3	TTL load
Тор	operating temperature range		-5	+25	+60	°C
To	operable temperature range		-40	-	+85	°C
T _{stg}	storage temperature range		-40	-	+100	°C
	haracteristics					
fn	nominal frequency range		7000	-	21000	kHz
Δf/f	initial frequency deviation with respect to the nominal frequency (f _n)	V _{contr} = 0 V see note 2	-	-	± 30	x 10 ⁻⁶
Δf/f	frequency deviation due to temperature variation	$T_0 = -5 \text{ to } +60 ^{\circ}\text{C}$	-	-	± 20	x 10 ⁻⁶
Δf/f	frequency deviation due to supply voltage and load variations	V _{CC} = 5 V ± 5% C _L = 15 to 50 pF or unloaded to 3 TTL loads	-	-	±5	x 10 ⁻⁶
Δf/f	frequency ageing	during 10 years at 60 °C	-	-	± 20	x 10-6
Δf/f	total frequency deviation from the initial frequency at V _{contr} = 0 V due to ageing, temperature, supply voltage and load variations			-	± 45	x 10 ⁻⁶
Δf/f	pullability ref. to fn	V _{CC} = -5 to +5 V	± 130	± 160	± 200	x 10 ⁻⁶
S	pulling sensitivity	inverse monotonic characteristic; f max at V _{contr} = -5 V	-15	-32	 60	x 10 ⁻⁶
Output char	acteristics					
t _r	rise time	between 10 and 90%	-	-	15	ns
tf	fall time	between 10 and 90%	<u> </u>	-	15	ns
	output logic levels	compatible with	-	HCMOS	-	-
	duty cycle	Top = 25 °C V _{contr} = 0 V output level 1.5 V	45		55	%
		$T_{op} = -5 +60 ^{\circ}\text{C}$ $\Delta V_{contr} = -5 \text{ to } +5 \text{ V}$ output level 1.5 V	40		60	%

Notes to the electrical data

- 1. Maximum value shows the worst case over the full operating temperature and control voltage ranges. Supply voltage is decoupled internally.
- 2. The initial frequency deviation does not degrade the margin between pullability and stability as the pullability is stated relative to the nominal frequency.

9922 515 602 series

MECHANICAL DATA

Philips Components Product specification

Voltage controlled crystal oscillator Type VCO 2

9922 515 602 series

PINNING

SYMBOL PIN DESCRIPTION V_{contr} 1 control voltage GND 7 ground (case) V_{osc} 8 oscillator output V_{CC} 14 supply voltage

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp-heat	+25 to +55 °C 6 cycles at > 95% R.H.	< ± 5 x 10 ⁻⁶
Ea	shock	100 g half-sine 6 directions 1 blow/direction	< ± 5 x 10 ⁻⁶
Ed	free fall	250 mm on hard wood	< ± 5 x 10 ⁻⁶
Fc	vibration	frequency 10-500 Hz acceleration 20 g 3 directions 30 min.	< ± 5 x 10 ⁻⁶
Nb	rapid change of temperature	1 h –40 °C/1 h +85 °C 10 cycles	< ± 5 x 10 ⁻⁶
Qc	sealing gross leak		no bubbles
Qk	sealing fine leak	16 h 700 kPa He	< 1 x 10 ⁻⁸ Ncc/s He
Ta-1	solderability	235 ± 5 °C 2 ± 0.5 s	good tinning
Tb-1a	resistance to soldering heat	260 ± 5 °C 10 ± 1 s	<±5 x 10 ⁻⁶
Ub	bending of wire terminations	1 time 90 load 5 N	no leaks
,	ageing	1000 h 70 °C	<± 5 x 10 ⁻⁶

Data sheet		
status	Product specification	
date of issue March 1991		

9922 515 603 seriesVoltage controlled crystal oscillator Type VCO 3

DESCRIPTION

The type VCO 3 voltage controlled oscillator comprises a quartz crystal, an oscillator circuit, a voltage-reference and a divider-circuit. The package has four connecting pins with pin spacing compatible with 14-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range	1000	-	10000	kHz
Δf/f	frequency stability (all effects and tolerances included)	-	-	± 45	x 10 ⁻⁶
Vcc	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	-4	-	+4	٧
Z _L	output load	-	-	3	TTL load
Тор	operating temperature range	5	-	+55	°C
	mass	-	3.9	-	g

9922 515 603 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating co	onditions					
Vcc	supply voltage		4.75	5	5.25	V
lcc	supply current	note 1,	-	4	8	mA
V _{contr}	control voltage range		-4	0.0	+4	V
Z _L	output load (fan out)	including 15 pF to GND	-	-	3	TTL load
ts	start-up time		-		10	ms
CL	output load capacitance		-	-	50	pF
T _{op}	operating temperature range		- 5	-	+55	°C
Top	operable temperature range		-20	-	+70	°C
T _{stg}	storage temperature range		-40	-	+100	°C
Frequency o	haracteristics					
fn	nominal frequency range		1000	-	10000	kHz
Δf/f	initial frequency deviation with respect to the nominal frequency (fn)	V _{contr} = 0 V note 2	-	-	± 15	x 10 ⁻⁶
Δf/f	frequency deviation due to temperature variation	T _{op} = -5 to +55 °C	-		± 20	x 10 ⁻⁶
Δf/f	frequency deviation due to supply voltage and load variations	$\Delta V_{CC} = 5V \pm 5\%$ $C_L = 15$ to 50 pF or unloaded to 3TTL loads	-	± 1.5		x 10 ⁻⁶
Δf/f	frequency ageing	during 10 years at 55 °C	-	-	± 20	x 10-6
Δf/f	total frequency deviation from the initial frequency at V _{contr} = 0 V due to ageing, temperature, supply voltage and load variations		-	-	± 45	x 10 ⁻⁶
S	pullability with reference to	V _{contr} = - 4 to +4 V	-	± 220	-	x 10-6/V
(Δf/f)	Pulling sensitivity	inverse monotonic characteristic; f _{max} at V _{contr} = -4 V	- -	-55	-	x 10−6
Output char	acteristics					
t _r	rise time	between 10 and 90%	-	-	10	ns
tf	fall time	between 10 and 90%	-	-	10	ns
	output logic levels	compatible with HCMOS	-	-	-	
	duty cycle	$T_0 = -5$ to +55 °C $V_{contr} = -4$ to +4 V output level 2.5 V	-	-	50	%

Notes to the electrical data

- Maximum value shows the worst case over the full operating temperature and control voltage ranges. Supply voltage is decoupled internally.
- 2. The initial frequency deviation does not degrade the margin between pullability and stablility as the pullability is stated relative to the nominal frequency.

9922 515 603 series

MECHANICAL DATA

9922 515 603 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{contr}	1	control voltage
GND	7	ground (case)
Vosc	8	oscillator output
Vcc	14	supply voltage

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp-heat	+25 to +55 °C 6 cycles at > 95% R.H.	< ± 5 x 10 ⁻⁶
Ea	shock	100 g half-sine 6 directions 1 blow/direction	< ± 5 x 10 ⁻⁶
Ed	free fall	250 mm on hard wood	< ± 5 x 10 ⁻⁶
Fc	vibration	frequency 10-500 Hz acceleration 20 g 3 directions 30 min.	<±5 x 10 ⁻⁶
Nb	rapid change of temperature	1 h -40 °C/1h +85 °C 10 cycles	< ± 5 x 10 ⁻⁶
QC	sealing gross leak		no bubbles
Qk	sealing fine leak	16 h 700 kPa He	< 1 x 10 ⁻⁸ Ncc/s He
Ta-1	solderability	235 ± 5 °C 2 ± 0.5 s	good tinning
Tb-1a	resistance to soldering heat	260 ± 5 °C 10 ± 1 s	<±5 x 10 ⁻⁶
Ub	bending of wire terminations	1 time 90 load 5 N	no leaks
	ageing	1000 h 70 °C	<±5 x 10 ⁻⁶

Data sheet				
status	Product specification			
date of issue	March 1991			

9922 515 604 seriesVoltage controlled crystal oscillator Type VCO 4

DESCRIPTION

The type VCO 4 voltage controlled oscillator comprises a quartz crystal and a HCMOS buffer circuit assembled together in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has connecting pins with pin spacing compatible with 14-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
f _n	nominal frequency range	7000	- 20 20	17000	kHz
Δf/f	frequency stability (all effects and tolerances included)	-	 	± 50	x 10 ^{−6}
V _{CC}	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	0.5	-	+4.5	٧
ZL	output load	-	-	3	TTL load
T _{op}	operating temperature range	0	-	+70	°C
	mass	-	3.9	-	g

9922 515 604 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating of	conditions		······································		i	- h
Vcc	supply voltage		4.75	5	5.25	V
lcc	supply current	note 1		6	10	mA
V _{contr}	control voltage range		+0.5	+2.5	+4.5	V
ZL	output load (fan out)	including 15 pF to GND	_	-	3	TTL load
ts	start-up time		T -	2	-	ms
CL	output load capacitance		-	-	50	pF
T _{op}	operating temperature range		0	-	+70	°C
T _{stg}	storage temperature range		-40	-	+100	°C
Frequency	characteristics					
fn	nominal frequency range		7000	-	17000	kHz
Δf/f	initial frequency deviation with respect to the nominal frequency (f _n)	V _{contr} = +2.5 V note 2	-	-	± 20	x 10 ⁻⁶
Δf/f	frequency deviation due to temperature variation	T _{op} = 0 to +70 °C	-	-	± 25	x 10 ⁻⁶
Δf/f	frequency deviation due to supply voltage and load variations	ΔV_{CC} = 5 V ± 5% C_L = 15 to 50 pF or unloaded to 3 TTL loads	-	-	±5	x 10 ⁻⁶
Δf/f	frequency ageing	during 10 years at 70 °C	-	-	± 20	x 10 ⁻⁶
Δf/f	total frequency deviation from the initial frequency at V _{contr} = +2.5 V due to ageing, temperature, supply voltage and load variations		-	-	± 50	x 10 ⁻⁶
Δf/f	pullability with reference to fn	$\Delta V_{c} = +0.5 \text{ to } +4.5 \text{ V}$	± 80	± 100	± 120	× 10-6
S	pulling sensitivity	positive monotonic characteristic; f _{max} at V _{contr} = +4.5 V	-	+50	-	x 10 ⁻⁶
Output cha	racteristics					
t _r	rise time	between 10 and 90%	T -	T -	10	ns
t _f	fall time	between 10 and 90%	-		10	ns
	output logic levels	compatible with	1-	HCMOS	-	-
	duty cycle	T _o = 0 to 70 °C V _{contr} = +0.5 to +4.5 V output level 2.5 V	40	-	60	%

Notes to the electrical data

- Maximum value shows the worst case over the full operating temperature and control voltage ranges. Supply voltage is decoupled internally.
- 2. The initial frequency deviation does not degrade the margin between pullability and stability as the pullability is stated relative to the nominal frequency.

9922 515 604 series

MECHANICAL DATA

9922 515 604 series

PINNING

SYMBOLPINDESCRIPTIONVcontr1control voltageGND7ground (case)Vosc8oscillator outputVCC14supply voltage

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp-heat	+25 to +55 °C 6 cycles at > 95% R.H.	< ± 5 x 10 ⁻⁶
Ea	shock	100 g half-sine 6 directions 1 blow/direction	< ± 5 x 10 ⁻⁶
Ed	free fall	250 mm on hard wood	< ± 5 x 10 ⁻⁶
Fc	vibration	frequency 10-500 Hz acceleration 20 g 3 directions 30 min.	< ± 5 x 10 ⁻⁶
Nb	rapid change of temperature	1 h –40 °C/1 h +85 °C 10 cycles	< ± 5 x 10 ⁻⁶
Qc	sealing gross leak		no bubbles
Qk	sealing fine leak	16 h 700 kPa He	< 1 x 10 ⁻⁸ Ncc/s He
Ta-1	solderability	235 ± 5 °C 2 ± 0.5 s	good tinning
Tb-1a	resistance to soldering heat	260 ± 5 °C 10 ± 1 s	< ± 5 x 10 ⁻⁶
Ub	bending of wire terminations	1 time 90 load 5 N	no leaks
	ageing	1000 h 70 °C	< ± 5 x 10 ⁻⁶

Data sheet							
status	Development-data						
date of issue	March 1991						

9922 514 605 series Voltage controlled crystal oscillator Type VCO 5

DESCRIPTION

The type VCO 5 voltage controlled oscillator is a high-frequency unipolar device. It comprises a quartz crystal and an oscillator circuit using surface mounted techniques. The assembly is encapsulated in a metal housing. The package has five connecting pins.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
f _n	nominal frequency range	17000	-	31000	kHz
Δf/f	frequency stability (all effects and temperature ranges included)	-	-	± 40	x 10 ⁻⁶
Vcc	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	0.5	-	+4.5	V
Top	operating temperature range	0	-	+70	°C

9922 514 605 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating	conditions					
Vcc	supply voltage		4.75	5	5.25	V
lcc	supply current	note 1	-	12.5	20	mA
V _{contr}	control voltage range		0.5	-	+4.5	V
Z _L	output load (fan out)	including 15 pF to GND	-	-	3	TTL load
Top	operating temperature range		0	-	+70	°C
T _{stg}	storage temperature range		-25	-	+85	°C
Frequency	characteristics					
fn	nominal frequency range		17000	-	31000	kHz
Δf/f	initial frequency deviation with respect to the nominal frequency	V _{contr} = 2.5 V note 2	-	-	± 20	x 10 ⁻⁶
Δf/f	frequency deviation due to temperature variation	$\Delta T_{op} = 0 \text{ to } +70 ^{\circ}\text{C}$	-		± 20	x 10 ⁻⁶
Δf/f	frequency deviation due to supply voltage and load variations	$\Delta V_{CC} = 5 \text{ V} \pm 5\%$ $C_L = 15 \text{ to } 50 \text{ pF}$ or unloaded to 3TTL loads	₹Se γ.		±5	x 10 ⁻⁶
Δf/f	frequency ageing	during 1000 h at 85 °C	-	± 10	-	x 10-6
Δf/f	total frequency deviation from the initial frequency at V _{contr} = 2.5 V due to ageing, temperature supply voltage and load variations				± 40	x 10 ⁻⁶
Δf/f	pullability with reference to the nominal frequency	$\Delta V_{contr} = 0.5 \text{ to } +4.5 \text{ V}$	-	± 60		x 10 ⁻⁶
Output cha	racteristics	The state of the s		***************************************		
	output logic levels	compatible with	-	HCMOS	-	-
	duty cycle	T _{op} = 0 -70 °C V _{contr} = +0.5 to +4.5 V output level 2.5 V	40	-	60	%

Notes to electrical data

- Maximum value shows the worst case over the full operating temperature and control voltage ranges. Supply voltage is decoupled internally.
- 2. The initial frequency deviation does not degrade the margin between pullability and stability as the pullability is stated relative to the nominal frequency.

9922 514 605 series

MECHANICAL DATA

Voltage controlled crystal oscillator 9922 514 605 series **Type VCO 5**

PINNING

SYMBOL	PIN	DESCRIPTION
Vcc	1	supply voltage
Vosc	2	oscillator output
GND	3	ground (case)
n.c.	4	not connected
V _{contr}	5	control voltage

Marking

frequency in kHz

last five digits of catalogue code:

code for month and year of manufacture

Data sheet						
status	Development-data					
date of issue	March 1991					

9922 514 606 seriesVoltage controlled crystal oscillator Type VCO 6

DESCRIPTION

The type VCO 6 voltage controlled oscillator has a high pulling sensitivity (typically 100×10^{-6} /V) plus a linear and stable frequency control characteristic. It comprises a quartz crystal and an oscillator circuit using surface mounted techniques. The assembly is encapsulated in a metal housing.

TESTS AND REQUIREMENTS

See 'Tests and requirements' To be fixed.

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range	7000	-	17000	kHz
Δf/f	frequency stability (all effects and tolerances included)	-	-	± 40	x 10 ⁻⁶
Vcc	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	1	-	4	V
Z _L	output load	-	_	3	TTL load
T _{op}	operating temperature range	0	_	+60	°C
	mass	-	7.5		g

9922 514 606 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating co	onditions					
Vcc	supply voltage		4.75	5	5.25	V
Icc	supply current		-	9	15	mA
V _{contr}	control voltage range		1	-	4	٧
T _{op}	operating temperature range		0	-	60	°C
Frequency c	haracteristics					
f _n	nominal frequency range		7000	-	17000	kHz
S	pulling sensitivity		-	+ 100	-	x 10-6
Δf/f	pullability with reference to the nominal frequency (fn)	V _{contr} = +1 to +4 V	-	± 150	-	x 10 ⁻⁶
Δf/f	total frequency deviation from the ideal frequency transfer function due to calibration, temperature, supply voltage, load and ageing variations		-	-	± 40	x 10 ⁻⁶
Output chara	acteristics					
	output logic levels	compatible with	-	HCMOS	-	-
	duty cycle		40	-	60	%

Fig.1 Frequency as a function of control voltage characteristic (typical curve).

9922 514 606 series

MECHANICAL DATA

PINNING

SYMBOL	PIN	DESCRIPTION
Vcc	1	supply voltage
Vosc	2	oscillator output
V _{contr}	4	control voltage
GND	5	ground (case)

Marking

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

Objective enecification		
Objective specification March 1991		

9922 519 1 seriesVoltage controlled crystal oscillator Type VCO 7

DESCRIPTION

The type VCO 7 voltage controlled oscillator is a unipolar device. It comprises a quartz crystal and an oscillator circuit assembled using surface mounted techniques. The assembly is encapsulated in a metal housing that has four connecting pins with pin spacing compatible to 14/4-pin DIL packages.

TESTS AND REQUIREMENTS

See 'Tests and requirements' To be fixed

APPLICATIONS

- Clock recovery circuits (phaselocked loops)
- Multiplexing equipment in digital telephone networks
- · Local area networks

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range	7000	-	27000	kHz
Δf/f	frequency stability in the temperature range	-	-	±25	x 10 ⁻⁶
Vcc	supply voltage range	4.75	5	5.25	٧
V _{contr}	control voltage range	0.5	-	4.5	٧
T _{op}	operating temperature range	0	-	+70	°C
	mass	-	3.7	-	g

9922 519 1 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating c	onditions					
Vcc	supply voltage		4.75	5	5.25	V
Icc	supply current		-	6	-	mA
V _{contr}	control voltage range		0.5	-	4.5	V
T _{op}	operating temperature range		0	-	70	°C
Frequency of	haracteristics					
fn	nominal frequency range		7000	-	27000	kHz
Δf/f	frequency stability in the temperature range		-	-	±25	x 10 ⁻⁶
S	pulling sensitivity		-	+50	-	x 10 ⁻⁶ /V
Δf/f	frequency deviation over control voltage range 0.5 to + 4.5 V		-	± 100	-	x 10 ⁻⁶
Δf/f	initial frequency deviation with respect to nominal frequency	V _{contr} = 2.5 V see note	-	-	± 20	x 10 ⁻⁶
Output char	acteristics					
	output logic levels	compatible with	-	HCMOS	-	-
	duty cycle		40	- 7	60	%

Note to electrical data

The initial frequency deviation does not degrade the margin between pullability and stability as the pullability is stated relative to the nominal frequency.

March 1991

Voltage controlled crystal oscillator Type VCO 7

9922 519 1 series

MECHANICAL DATA

PINNING

SYMBOL	PIN	DESCRIPTION
V _{contr}	1	control voltage
GND	7	ground (case)
Vosc	8	oscillator output
Vcc	14	supply voltage

Marking -

frequency in kHz last five digits of catalogue code: code for month and year of manufacture

i illipa componenta				
Data sheet				
status Preliminary specificatio				
date of issue March 1991				
the second second				

9922 515 0 series Voltage controlled temperature compensated crystal oscillator

APPLICATIONS

- Cellular telephone (e.g. GSM)
- Mobile and portable radio/telephone
- Communication transceivers
- · Cordiess telephone

DESCRIPTION

The Voltage controlled Temperature Compensated Crystal Oscillator (VTCXO) is based on an IC and a Quartz Crystal. The IC contains the oscillator, the temperature compensation and the modulation function. The components are assembled on a hybrid circuit. A metal cover is placed on top of the hybrid for shielding. It is available in four versions with different stability and modulation figures.

TESTS AND REQUIREMENTS

See 'Tests and requirements' Table

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
f _n	nominal frequency range	8 000	16 000	kHz
Δf/f	frequency stability over temperature version 1 version 2 version 3 version 4	- - -	±1.5 ±2.5 ±4.0 ±8.0	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _o	operating temperature range	-30	+80	°C
V _{osc}	output voltage (peak-to-peak value)	1.0	-	٧

9922 515 0 series

ELECTRICAL DATA

onditions					UNIT
OTTG: GOTTG					
supply voltage		4.75	5.0	5.25	V
supply current		-	2.5	3.0	mA
output voltage (peak-to-peak value)	8 - ≤ 13 MHz	1.0	-	_	V
en a ej grejtur og grej et i grej et mil	13 - ≤ 16 MHz	0.7	_,		V
output load		_	_	10	kΩ
Taking kepanggan di Albania di Albania			12 800	10	pF
operating temperature range		-30	+25	+80	°C
		-40		+90	¹ °C
		-45	<u> </u>	+100	°C
			 		ms
L		<u> </u>	<u> </u>	100	11110
	T	10,000	T	16.000	kHz
	T 00 to 00 00	8 000		16 000	KIIZ
of temperature changes	$T_{\text{amb}} = -30 \text{ to } +80 \text{ °C}$				
	version 1	-	-	I	x 10 ⁻⁶
		-	-	1	x 10 ⁻⁶
	1	-	- '	1	x 10 ⁻⁶
formula de della constitución			 	±8.0	x 10 ⁻⁶
	V _{CC} = 5 V IS %				
or supply voltage chariges	version 1	_	_	±0.2	x 10-6
		_			x 10 ⁻⁶
	version 3	 	-	±0.5	x 10 ⁻⁶
	version 4	_	-	±1.0	x 10 ⁻⁶
frequency deviation as a function of load changes	load = $10k\Omega$ //10pF ±10 %				
	version 1	-	-	±0.2	x 10 ⁻⁶
	version 2	-	-		x 10 ⁻⁶
	I .	-	-		x 10 ⁻⁶
			<u> </u>	±1.0	x 10 ⁻⁶
frequency ageing	1				
	1				
	version 1	-	-	1	x 10 ⁻⁶
		-	-	1	x 10 ⁻⁶
		-	-		x 10 ⁻⁶
6		<u> </u>	 	±2.5	x 10 ⁻⁶
requency modulation	note i				
	version 1		+4.0		x 10 ⁻⁶
		1_	1	1	x 10 ⁻⁶
	ł ·		1	I	x 10 ⁻⁶
		1	1	į.	x 10 ⁻⁶
	output voltage (peak-to-peak value) output load operating temperature range operable temperature range storage temperature start-up time characteristics nominal frequency range frequency deviation as a function of temperature changes frequency deviation as a function of supply voltage changes	$ \begin{array}{c} \text{output voltage (peak-to-peak value)} & 8 \ - \le \ 13 \ \text{MHz} \\ 13 \ - \le \ 16 \ \text{MHz} \\ \hline \\ \text{output load} \\ \hline \\ \text{operating temperature range} \\ \text{operable temperature range} \\ \text{storage temperature} \\ \\ \text{start-up time} \\ \hline \\ \text{characteristics} \\ \\ \text{nominal frequency range} \\ \hline \\ \text{frequency deviation as a function of temperature changes} \\ \hline \\ \text{frequency deviation as a function of supply voltage changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{frequency ageing} \\ \hline \\ \text{frequency ageing} \\ \hline \\ \text{frequency deviation as a function of load changes} \\ \hline \\ \text{version 1} \\ \text{version 2} \\ \text{version 1} \\ \text{version 1} \\ \text{version 2} \\ \text{version 1} \\ \text{version 2} \\ \text{version 3} \\ \text{version 3} \\ \text{version 3} \\ \text{version 3} \\ \text{version 4} \\ \hline \\ \text{frequency ageing 1} \\ \hline \\ \text{frequency 2} \\ \hline \\ \text{device 2} \\ \hline \\ \text{device 3} \\ \hline \\ \text$	$ \begin{array}{c} \text{output voltage (peak-to-peak value)} & 8 - \leq 13 \text{MHz} & 1.0 \\ 13 - \leq 16 \text{MHz} & 0.7 \\ \hline \\ \text{output load} & - \\ & - \\ \\ \text{operating temperature range} & -30 \\ \text{operable temperature range} & -40 \\ \text{storage temperature} & -45 \\ \text{start-up time} & - \\ \\ \text{characteristics} \\ \hline \\ \text{nominal frequency range} & T_{amb} = -30 \text{ to } +80 ^{\circ}\text{C} \\ \text{version 1} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{frequency deviation as a function of supply voltage changes} & version 1 & - \\ \text{version 1} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{frequency deviation as a function of load changes} & version 4 & - \\ \hline \\ \text{frequency deviation as a function of load changes} & version 1 & - \\ \text{version 1} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{frequency ageing} & per year \\ \hline \\ T_{amb} = 35 ^{\circ}\text{C} \\ \text{version 1} & - \\ \text{version 2} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{frequency modulation} & \text{note 1} \\ \hline \\ \text{version 2} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{frequency modulation} & \text{note 1} \\ \hline \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 2} & - \\ \text{version 2} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \hline \\ \text{frequency modulation} & \text{note 1} \\ \hline \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{output 1} & - \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{version 2} & - \\ \text{version 3} & - \\ \text{version 3} & - \\ \text{version 4} & - \\ \hline \\ \text{version 2} & - \\ \hline \\ \text{version 3} & - \\ \hline \\ versi$	Section 2 Section 3 Section 4 Section 3 Section 4 Section 4 Section 4 Section 4 Section 5 Section 5 Section 5 Section 6 Section 6 Section 6 Section 6 Section 6 Section 6 Section 7 Section 6 Section 7 Section 7 Section 7 Section 7 Section 8 Se	output voltage (peak-to-peak value) 13 - ≤ 16 MHz

March 1991 37

9922 515 0 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{contr}	control voltage range	note 1	±0.6	±0.9	±1.2	V
		note 2				
α	phase noise	offset = 1 kHz	-	-	-	-120 dBc

Notes

- The figure stated as frequency modulation indicates the nominal modulation obtained when the control voltage has a certain value within a specified range.
- 2. The control voltage range is relative to a DC bias voltage of 2.5 V ±0.75 V (±0.75 V may be used for calibration at 25 °C and for ageing adjustment).

9922 515 0 series

TESTS AND REQUIREMENTS

Table 1

IEC 68-2	TEST	PROCEDURE
Ea	shock	100 g half-sine 6 directions 1 blow/direction
Ed	free fall	height 500 mm 3 random drops
Fc	vibration	frequency 10 — 500 Hz acceleration 20 g 3 directions, 30 min
Ta-1	solderability	235 ±5 °C 2 ±0.5 s
Tb-1a	resistance to soldering heat	260 ±5 °C 10 ±1 s

After these tests, the oscillator will work according to specification and show no frequency change larger than 0.5 10^{-6} .

Table 2 PINNING

SYMBOL	PIN	DESCRIPTION	
GND	1	ground (case)	
Vosc	2	oscillator output	
Vcc	3	supply voltage	
V _{contr}	4	control voltage	
MARKING		frequency in MHz	
		code for year and week of manufacture	
		version code	

9922 515 0 series

Data sheet				
status	Product specification			
date of issue	March 1991			

9922 511 3 series Temperature compensated crystal oscillator Type TC 201

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which can be mounted on a printed-circuit board, secured by two bolts M2.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1.

APPLICATIONS

- Mobile telephony (base stations)
- · Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4000	20000	kHz
Δf/f	frequency stability in the temperature range: -40 to +85 °C	-	±1	x 10 ⁻⁶
Top	operating temperature range	-40	+85	°C
Vcc	supply voltage range (fixed value)	5	12	V
ZL	output load (range):	50	1000	Ω
	mass	-	35	g

9922 511 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage range (fixed value)		5	-	12	V
lcc	supply current		-	6	10	mA
fn	nominal frequency range		4000	-	20000	kHz
Δf/f	frequency tuning range	1 K-1	±3	±5	-	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment in the temperature ranges	$V_{CC} = 5 \text{ to } 12 \text{ V}$ $\Delta T_{o} = -20 \text{ to } +70 \text{ °C}$ $\Delta T_{o} = -40 \text{ to } +85 \text{ °C}$ $V_{CC} = 12 \text{ V only}$	-	, -	±1 ±1	x 10 ⁻⁶ x 10 ⁻⁶
		$\Delta T_0 = -40 \text{ to } +85 \text{ °C}$ $\Delta T_0 = -55 \text{ to } -40 \text{ °C}$ $\Delta T_0 = +85 \text{ to } +105 \text{ °C}$	- - -	- - -	±2 ±5 ±5	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	frequency ageing	per year	-	-	1	x 10 ⁻⁶
Δf/f	frequency deviation due to load impedance variation	$\Delta Z_{L} = \pm 5\%$	-	-	± 0.1	x 10 ⁻⁶
Δf/f	frequency variation due to supply voltage variation	per % V _{CC}	-	-	± 0.04	x 10 ⁻⁶
:	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
V _{osc}	output voltage (RMS)	$Z_L = 50 \Omega$ $Z_L = 1000 \Omega$	200 350	-	-	mV mV
T _{stg}	storage temperature range		-55	-	+125	°C

Note to the electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 3 and 4. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 3 x 10-6 remains available for correcting ageing influences.

9922 511 3 series

9922 511 3 series

PINNING

SYMBOL	PIN	DESCRIPTION
GND	2	ground (case)
V _{CC}	1	supply voltage
Vosc	5	oscillator output
R _{ext}	4,3	external trimming resistor connected between pins 3 and 4

Marking

Type catalogue code

Freq. ...MHz nominal frequency

Δf25 °C ..Hz value for frequency

adjustment

Range ... °C temperature range

No. .../.... serial number / code

for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+40 °C 95% R.H.	$\Delta f/f \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C tl = 30 min. 5 cycles relaxation 24 h	$\Delta f/f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10 - 2000 Hz 15 g total time: 4 h/axis one octave/min.	Δf/f ≤ ± 1 x 10 ⁻⁶
Ea	shock	50 g (1/2 sine) 6 directions 1 blow/direction	$\Delta f/f \le \pm 1 \times 10^{-6}$
Та	solderability	235 ± 5 °C. 5 s	good tinning
ТЬ	resistance to soldering heat	260 ± 5 °C max. 10 s ± 1 s	< ± 1 x 10 ⁻⁶
	storage	16 h at +105 °C 2 h at -55 °C	$\Delta f/f \le \pm 0.5 \times 10^{-6}$

Data sheet		
status	Product specification	
date of issue	March 1991	

9922 511 1 series Temperature compensated crystal oscillator Type TC 202

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which can be mounted on a printed-circuit board, secured by two bolts M2.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1.

APPLICATIONS

- Mobile telephony (base stations)
- Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4000	20000	kHz
Δf/f	frequency stability in the temperature range: -40 to +85 °C		±1	x 10 ⁻⁶
Top	operating temperature range	-40	+85	°C
V _{CC}	supply voltage	4.75	5.25	٧
Z _L	output load (fan-out):	-	3	LSTTL load
	mass	-	35	g

March 1991 45

9922 511 1 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _C C	supply voltage		4.75	5	5.25	٧
lcc	supply current		-	6	10	mA
fn	nominal frequency range		4000	-	20000	kHz
Δf/f	frequency tuning range	*	± 3	±5	- 5,5	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment in the temperature range	$V_{CC} = 5 \text{ V}$ $\Delta T_0 = -20 \text{ to } +70 \text{ °C}$ $\Delta T_0 = -40 \text{ to } +85 \text{ °C}$	<u>-</u>	-	±1 ±1	x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	frequency ageing	per year	-	1-	±1	x 10 ⁻⁶
Δf/f	frequency variation due to supply voltage variation	per % V _{CC}	-	-	0.04	x 10 ⁻⁶
	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
ZL	output load (fan-out)		-	-	3	LSTTL load
T _{stg}	storage temperature range		-55	-	+105	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 3 and 4. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 3 x 10⁻⁶ remains available for correcting ageing influences.

9922 511 1 series

9922 511 1 series

PINNING

SYMBOL	PIN	DESCRIPTION
GND	2	ground (case)
V _{CC}	1	supply voltage
Vosc	5	oscillator output
R _{ext}	3,4	external trimming resistor connected between pins 3 and 4

Marking

No. .../....

Type catalogue code

Freq. ...MHz nominal frequency

Δf25 °C ..Hz value for frequency adjustment

Range ... °C temperature range

serial number / code for week and year of manufacture

Table 1. Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+40 °C 95% R.H.	$\Delta f/f \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C tl = 30 min. 5 cycles relaxation 24 h	$\Delta f/f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10 - 2000 Hz 15 g total time: 4 h/axis one octave/min.	Δf/f ≤ ± 1 x 10-6
Еа	shock	50 g (1/2 sine) 6 directions 1 blow/direction	$\Delta f/f < \pm 1 \times 10^{-6}$
Та	solderability	235 ± 5 °C. 5 s	good tinning
Tb	resistance to soldering heat	260 °C ± 5 °C 10 s ± 1 s	< ± 1 x 10 ⁻⁶
	storage	16 h at +105 °C 2 h at -55 °C	$\Delta f/f \le 0.5 \times 10^{-6}$

March 1991 48

Data sheet		
status Product specification		
date of issue	March 1991	

9922 510 3 series Temperature compensated crystal oscillator Type TC 301

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4500	15000	kHz
Δf/f	frequency stability over temperature range: class 'A' class 'B' class 'C'	- -	±2 ±1.5 ±1	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _{op}	operating temperature range class 'A' class 'B' class 'C'	-20 -10 0	+70 +60 +50	သို့ သို့
Vcc	supply voltage	10.8	13.2	V
Z _L	load impedance	500	-	Ω
	mass	-	25	g

9922 510 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage	see Fig.1; R1 = 470 Ω	10.8	12	13.2	V
P _{tot}	total power dissipation		-	-	150	mW
fn	nominal frequency range		4500	-	15000	kHz
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment:	$\begin{array}{l} \Delta T_o < 1 \text{ K/min;} \\ V_{CC} = 12 \text{ V} \\ Z_L = 500 \Omega \end{array}$				
	frequency deviation due to temperature variation class 'A' class 'B' class 'C'	$\Delta T_0 = -20 \text{ to } +70 \text{ °C}$ $\Delta T_0 = -10 \text{ to } +60 \text{ °C}$ $\Delta T_0 = 0 \text{ to } +50 \text{ °C}$		-	±2 ±1.5 ±1	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	frequency ageing	per year	-	-	±1	x 10 ⁻⁶
Δf/f	ageing correction	see note	±2	-	-	x 10 ⁻⁶
Ri	internal resistance	see Fig.2	2660	2800	2940	Ω
Ci	internal capacitance	see Fig.2	-	5.5	-	pF
Vi	internal voltage source	see Fig.2	360	600	840	mV
ZL	load impedance		500			Ω
Vosc	output voltage	see Figs 2 and 3	-	-	-	V
T _{stg}	storage temperature range		-25	-	+85	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable capacitor (max. 60 pF) between pins 2 and 3. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 2 \times 10-6 remains available for correcting ageing influences.

March 1991 50

9922 510 3 series

9922 510 3 series

9922 510 3 series

PINNING

01/11/10/1	-	D=00DID=1011
SYMBOL	PIN	DESCRIPTION
Vcc	1	supply voltage
GND	2	ground (case)
C _{ext}	3	external trimming capacitor connected between pin 3 and GND
i.c.	4	internally connected
Vosc	5	oscillator output

Marking

Туре	catalogue code
FreqMHz	nominal frequency
Δf25 °CHz	value for frequency adjustment
Range °C	temperature range
No/	serial number / code for week and year of

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp heat	+25 to +55 °C 6 cycles at >95% R.H.	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Ea	shock	50 g 6 directions 1 blow/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Fc	vibration	10-500-10 Hz acceleration 10 g 3 directions 30 min/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Tb	resistance to soldering heat	260 +/- 5 °C 10 +/- 1 s	$\Delta f/f < \pm 0.5 \times 10^{-6}$

manufacture

Data sheet		
status Product specification		
date of issue	March 1991	

9922 510 3 series Temperature compensated crystal oscillator Type TC 302

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4500	15000	kHz
Δf/f	frequency stability over temperature range: class 'A' class 'B' class 'C'	- '	±2 ±1.5 ±1	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _{op}	operating temperature range class 'A' class 'B' class 'C'	-20 -10 0	+70 +60 +50	သို့ သို့
Vcc	supply voltage	10.8	13.2	٧
ZL	load impedance	500	-	Ω
	mass	-	25	g

March 1991 54

9922 510 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage	see Fig.1 R1 = 470 Ω	10.8	12	13.2	٧
P _{tot}	total power dissipation		-	-	150	mW
fn	nominal frequency range		4500	T-	12000	kHz
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment	$ \begin{array}{l} \text{see note} \\ \Delta T_0 < 1 \text{ K/min} \\ V_{CC} = 12 \text{ V} \\ Z_L = 500 \ \Omega \\ \end{array} $				
Δf/f	frequency deviation due to temperature variation class 'A' class 'B' class 'C'	$\Delta T_0 = -20 \text{ to } +70 \text{ °C}$ $\Delta T_0 = -10 \text{ to } +60 \text{ °C}$ $\Delta T_0 = 0 \text{ to } +50 \text{ °C}$		-	±2 ±1.5 ±1	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	frequency ageing	per year	-	T-	±1	x 10 ⁻⁶
Δf/f	ageing correction	see note	± 2	- 5,, ,	-	x 10 ⁻⁶
Ri	internal resistance	see Fig.2	2660	2800	2940	Ω
Ci	internal capacitance	see Fig.2	-	5.5	T -	pF
Vi	internal voltage source	see Fig.2	360	600	840	mV
ZL	load impedance		500	-	-	Ω
Vosc	output voltage (RMS value)	see Figs 2 and 3	- 1	- 1 1 1 1	-	٧
T _{stg}	storage temperature range		-25	-	+85	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (max. $2 \text{ k}\Omega$) between pins 2 and 3. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against 'f25 °C .. Hz'. After this adjustment, a trimming range of at least $\pm 2 \times 10^{-6}$ remains available for correcting ageing influences.

9922 510 3 series

56

9922 510 3 series

9922 510 3 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{CC}	1	supply voltage
GND	2	ground (case)
R _{ext}	3	external trimming resistor connected between pin 3 and GND
i.c.	4	internally connected
Vosc	5	oscillator output

Marking

Type	catalogue code
FreqMHz	nominal frequency
Δf25 °CHz	value for frequency adjustment
Range °C	temperature range
No/	serial number / code for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp heat	+25 to +55 °C 6 cycles at >95% R.H.	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Ea	shock	50 g 6 directions 1 blow/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Fc	vibration	10-500-10 Hz acceleration 10 g 3 directions 30 min/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Tb	resistance to soldering heat	260 +/- 5 °C 10 +/- 1 s	$\Delta f/f < \pm 0.5 \times 10^{-6}$

Data sheet				
status Product specification				
date of issue	March 1991			

9922 510 3 series Temperature compensated crystal oscillator Type TC 303

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- Electronic timers
- · Electronic measuring equipment
- Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4000	20000	kHz
Δf/f	frequency stability in the temperature range -20 to +70 °C -40 to +85 °C -40 to +85 °C -55 to -40 °C +85 to + 105 °C		±1 ±1 ±2 ±5	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _{stg}	storage temperature range	-55	+125	°C
Vcc	supply voltage	11.4	12.6	V
Z _L	output load range	50	1000	Ω
	mass	-	25	g

9922 510 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage		11.4	12	12.6	V
P _{tot}	total power dissipation		-	60	100	mW
fn	nominal frequency range		4000	-	20000	kHz
Δf/f	frequency tuning range		±2	±3	-	x 10-6
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment	$\Delta T_0 = -20 \text{ to } +70 \text{ °C}$ $\Delta T_0 = -40 \text{ to } +85 \text{ °C}$ $\Delta T_0 = -40 \text{ to } +85 \text{ °C}$ $\Delta T_0 = -55 \text{ to } -40 \text{ °C}$ $\Delta T_0 = +85 \text{ to } +105 \text{ °C}$		- - -	±1 ±1 ±2 ±5 ±5	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	ageing per year		-	-	±1	x 10 ⁻⁶
Δf/f	frequency deviation due to load impedance variation	$\Delta Z_{L} = \pm 5\%$	-	-	± 1	x 10 ⁻⁷
Δf/f	frequency variation due to supply voltage variation	per % V _{CC}	-	-	± 4	x 10 ⁻⁸
Z _L	output load	fixed value	50	-	1000	Ω
V _{osc}	oscillator output voltage (RMS value)	$Z_L = 50 \Omega$ $Z_L = 1000 \Omega$	200 350	-	-	mV mV
T _{stg}	storage temperature range		-55	-	+125	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable capacitor (max. 60 pF) between pins 2 and 3. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against Δ f25 °C .. Hz. After this adjustment, a trimming range of at least \pm 2 x 10⁻⁶ remains available for correcting ageing influences.

March 1991 60

9922 510 3 series

9922 510 3 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{CC}	1	supply voltage
GND	2	ground (case)
C _{ext}	3	external trimming capacitor connected between pin 3 and ground
i.c.	4	internally connected
V _{osc}	5	oscillator output

Marking

Type..... Freq...MHz Δf25(...Hz) catalogue code nominal frequency value for frequency adjustment

Range..°C

temperature range

No.../...

serial number / code for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp-heat	+40 °C 95% R.H.	$\Delta f/f \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C tl = 30 min. 5 cycles relaxation 24 h	$\Delta f/f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10–2000 Hz 15 min. or 15 g (fc = 57 Hz) cycletime: 20 min. total time: 12 h	$\Delta f/f \le \pm 1 \times 10^{-6}$
Ea	shock		$\Delta f/f \le \pm 1 \times 10^{-6}$
Та	solderability	235 ± 5 °C. 5 s	good tinning $\Delta f/f \le \pm 0.5 \times 10^{-6}$
Tb	resistance to solvents		no damage
	storage	16 h at +105 °C 2 h at -55 °C	$\Delta f/f \le \pm 0.5 \times 10^{-6}$

Data sheet				
status Product specification				
date of issue March 1991				

9922 510 3 series Temperature compensated crystal oscillator Type TC 304

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4000	20000	kHz
Δf/f	frequency stability in the temperature range -20 to +70 °C -40 to +85 °C	_	±1 ±1	x 10 ⁻⁶ x 10 ⁻⁶
	-40 to +85 °C -55 to -40 °C +85 to +105 °C		±2 ±5 ±5	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _{stg}	storage temperature range	-55	+125	°C
V _{CC}	supply voltage	11.4	12.6	V
ZL	output load	50	1000	Ω
	mass	-	25	a

9922 510 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		11.4	12	12.6	V
P _{tot}	total power dissipation		-	60	100	mW
fn	nominal frequency range		4000	-	20000	kHz
Δf/f	frequency tuning range		± 2	±3	-	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (f _n) after adjustment	$\Delta T_{o} = -20 \text{ to } +70 ^{\circ}\text{C}$ $\Delta T_{o} = -40 \text{ to } +85 ^{\circ}\text{C}$	-	-	±1 ±1	x 10 ⁻⁶ x 10 ⁻⁶
		$\Delta T_0 = -40 \text{ to } +85 \text{ °C}$ $\Delta T_0 = -55 \text{ to } -40 \text{ °C}$ $\Delta T_0 = +85 \text{ to } +105 \text{ °C}$	-	- - -	±2 ±5 ±5	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	ageing per year		-	-	±1	x 10 ⁻⁶
Δf/f	frequency deviation due to load impedance variation	$\Delta Z_{L} = \pm 5\%$	-	-	±1	x 10 ⁻⁷
Δf/f	frequency variation due to supply voltage variation	per % V _{CC}	-	-	± 4	x 10 ⁻⁸
ZL	output load		50	-	1000	Ω
V _{osc}	oscillator output voltage (RMS value)	$Z_L = 50 \Omega$ $Z_L = 1000 \Omega$	200 350	-	-	mV mV
T _{stg}	storage temperature range		-55	-	+125	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor of max. 1 k Ω between pins 2 and 3. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against Δ f25 °C .. Hz. After this adjustment, a trimming range of at least \pm 2 x 10⁻⁶ remains available for correcting ageing influences.

March 1991 64

9922 510 3 series

9922 510 3 series

PINNING

SYMBOL PIN **DESCRIPTION** Vcc 1 supply voltage GND 2 ground (case) Cext 3 external trimming resistor connected between pin 3 and ground i.c. 4 internally connected Vosc 5 oscillator output

Marking

Type..... catalogue code
Freq...MHz nominal frequency
νalue for frequency
adjustment

Range..°C temperature range

No../..

serial number / code for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+40 °C 95% R.H.	$\Delta f/f \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C tl = 30 min. 5 cycles relaxation 24 h	$\Delta f/f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10 – 2000 Hz 15 min. or 15 g (fc = 57 Hz) cycletime: 20 min. total time: 12 h	$\Delta f/f \le \pm 1 \times 10^{-6}$
Ea	shock		$\Delta f/f \le \pm 1 \times 10^{-6}$
Та	solderability	234 ± 5 °C. 5 s	good tinning $\Delta f/f \le \pm 1 \times 10^{-6}$
Tb	resistance to solvents		no damage
	storage	16 h at +105 °C 2 h at -55 °C	$\Delta f/f \le \pm 1 \times 10^{-6}$

Data sheet					
status	Product specification				
date of issue	March 1991				

9922 510 1 series Temperature compensated crystal oscillator Type TC 305

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- · Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
f _n	nominal frequency range	20000	50000	kHz
Δf/f	frequency stability over temperature range: class 'A' class 'B' class 'C' class 'D'	- - -	±1 ±2 ±2 ±3	x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶ x 10 ⁻⁶
T _{op}	operating temperature range class 'A' class 'B' class 'C' class 'D'	0 -20 0 -20	+50 +70 +50 +70	ဂံဂံဂံဂံ
Vcc	supply voltage class 'A' and 'B' class 'C' and 'D'	11.76 10.8	12.24 13.2	V V
Z_{L}	load impedance	500	-	Ω
	mass	-	25	g

9922 510 1 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage type numbers: class 'A' and 'B' class 'C' and 'D'		11.76 10.8	12 12	12.24 13.2	V
P _{tot}	total power dissipation		-	160	180	mW
fn	nominal frequency range	1	20000	-	50000	kHz
Δf/f	frequency stability with respect to the nominal frequency (fn) after adjustment: class 'A' class 'B' class 'C' class 'D'	see Fig 3; see note; $\Delta T_0 < 1$ K/min; $V_{CC} = 12$ V $Z_L = 500$ $\Delta T_0 = 0$ to 50 °C $\Delta T_0 = -20$ to $+70$ °C $\Delta T_0 = 0$ to $+50$ °C $\Delta T_0 = -20$ to $+70$ °C	-	-	±1 ±2 ±2 ±3	x 10-6 x 10-6 x 10-6 x 10-6
Δf/f	frequency ageing	per year	 -	 -	† <u>+</u> 1	x 10-6
Δf/f	ageing correction	see note	± 2	-	1-	x 10 ⁻⁶
Ri	internal resistance		2660	2800	2940	Ω
Ci	internal capacitance		-	5.5	-	pF
Vi	internal voltage source		-	600	-	mV
Z _L	load impedance		500	1-	-	Ω
Vo	output voltage	see Fig.4	-	-	-	V
T _{stg}	storage temperature range	7,2	-25	† -	+85	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable capacitor (max. 20 pF) between pins 2 and 3. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 2 x 10⁻⁶ remains available for correcting ageing influences.

68

9922 510 1 series

Fig.2 Equivalent circuit.

Fig.3 Frequency stability (Δf_n) as a function of the tolerance on supply voltage (V_{CC}) over the whole temperature range.

9922 510 1 series

9922 510 1 series

PINNING

SYMBOL	PIN	DESCRIPTION
Vcc	1	supply voltage
GND	2	ground (case)
C _{ext}	3	external trimming capacitor connected between pin 3 and GND
i.c.	4	internally connected
Vosc	5	oscillator output

Marking

Type catalogue code

Freq. ...MHz nominal frequency

Δf25 °C ...Hz value for frequency adjustment

Range ... °C temperature range

No. .../.... serial number / code

for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp heat	+25 to +55 °C 6 cycles at >95% R.H.	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Ea	shock	50 g 6 directions 1 blow/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Fc	vibration	10-500-10 Hz acceleration 10 g 3 directions 30 min/direction	$\Delta f/f < \pm 0.5 \times 10^{-6}$
Tb	resistance to soldering heat	260 +/- 5 °C 10 +/- 1 s	$\Delta f/f < \pm 0.5 \times 10^{-6}$

Data sheet			
status Product specification			
date of issue March 1991			

9922 513 3 series Temperature compensated crystal oscillator Type TC 501

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	6000	20000	kHz
Δf/f	frequency stability in the temperature range: -40 to +85 °C	_	±1	x 10 ⁻⁶
Top	operating temperature range	-40	+85	°C
V _{CC}	supply voltage range (fixed value)	5	12	V
ZL	output load range (fixed value)	50	1000	Ω
	mass	-	10	g

Philips Components Product specification

Temperature compensated crystal oscillator Type TC 501

9922 513 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage range fixed value		5		12	V
Icc	supply current		-	4	5	mA
fn	nominal frequency range		6000	-	20000	kHz
Δf/f	frequency tuning range		± 5	-	-	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) in the temperature range					
	frequency deviation due to temperature variation	$V_{CC} = +5 \text{ to } +12 \text{ V}$ $T_{o} = -20 \text{ to } +70 \text{ °C}$ $T_{o} = -40 \text{ to } +85 \text{ °C}$ $V_{CC} = 12 \text{ V only}$ $T_{o} = -40 \text{ to } +85 \text{ °C}$ $T_{o} = -55 \text{ to } -40 \text{ °C}$ $T_{o} = +85 \text{ to } +105 \text{ °C}$	-	-	±1 ±1 ±2 ±5 ±5	x 10-6 x 10-6 x 10-6 x 10-6 x 10-6
Δf/f	ageing	per year	-	-	± 1	x 10 ⁻⁶
Δf/f	frequency deviation due to load impedance variation	$\Delta Z_{L} = \pm 10\%$	-	-	± 0.2	x 10 ⁻⁶
Δf/f	frequency variation due to supply voltage variation	V _{CC} ± 5%	-	-	± 0.1	x 10 ^{−6}
	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
V _{osc}	output voltage (RMS value)	$Z_L = 50 \Omega$ $Z_L = 1000 \Omega$	80 350	-	-	mV mV
T _{stg}	storage temperature range		-55		+125	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 4 and 5. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 5 x 10^{-6} remains available for correcting ageing influences.

March 1991 73

9922 513 3 series

MECHANICAL DATA

9922 513 3 series

PINNING

		Y
SYMBOL	PIN	DESCRIPTION
V _{CC}	1	supply voltage
Vosc	2	oscillator output
GND	3	ground (case)
R _{ext}	4	external trimming resistor connected between pin 4 and GND
GND	5	ground (case)

Marking

Δf25 °C ...Hz value for frequency

adjustment

FreqMHz nominal frequency Type

catalogue code

No. .../...

serial number /code for week and year of

manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+40 °C 95% R.H.	$\Delta f/_{f} \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C t _l = 30 min. 5 cycles relaxation 24 h	$\Delta f/_f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10-2000 Hz 15 g total time 4 h/axis one octave/minute	$\Delta f/_f \le \pm 1 \times 10^{-6}$
Еа	shock	50 g (1/2 sine) 6 directions 1 blow/direction	$\Delta f/_f \le \pm \ 1 \times 10^{-6}$
Т	solderability	235 ± 5 °C, 5 s	good tinning
Tb	resistance to soldering heat	260 °C ± 5 °C max 10 s ± 1 s	<±1 x 10 ⁻⁶

Data sheet			
status Product specification			
date of issue	March 1991		

9922 513 1 series Temperature compensated crystal oscillator Type TC 502

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has five connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1

APPLICATIONS

- Mobile telephony
- Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	6000	20000	kHz
Δf/f	frequency stability in the temperature range: -40 to +85 °C	-	± 1	x 10 ⁻⁶
Top	operating temperature range	-40	+85	°C
Vcc	supply voltage	4.75	5.25	٧
Z _L	output load	-	3	LSTTL load
	mass	T-	10	g

Temperature compensated crystal oscillator Type TC 502

9922 513 1 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage		4.75	-	5.25	٧
Icc	supply current		-	4	6	mA
f _n	nominal frequency range		6000		20000	kHz
Δf/f	frequency tuning range		± 5	-	T -	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) in the temperature range	$V_{CC} = 5 \text{ V}$ $\Delta T_{o} = -20 \text{ to } +70 \text{ °C}$ $\Delta T_{o} = -40 \text{ to } +85 \text{ °C}$	-	-	± 1 ± 1	x 10 ⁻⁶ x 10 ⁻⁶
Δf/f	ageing	per year	-	-	± 1	x 10 ⁻⁶
Δf/f	frequency variation due to supply voltage variation	V _{CC} ± 5%	-	-	± 0.1	x 10−6
	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
Z _L	output load (fan out)		-	-	3	LSTTL load
T _{stg}	storage temperature range		-55	-	+125	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 4 and 5. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 5 x 10⁻⁶ remains for correcting ageing influences.

March 1991 77

9922 513 1 series

MECHANICAL DATA

9922 513 1 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{CC}	1	supply voltage
Vosc	2	oscillator output
GND	3	ground (case)
R _{ext}	4	external trimming resistor connected between pin 4 and GND
GND	5	ground (case)

Marking

Δf25 °C ..Hz value for frequency

adjustment

Freq. ...MHz nominal frequency

Type catalogue code

No. .../.... serial number / code

for week and year of manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
Db	accelerated damp- heat	+40 °C 95% R.H.	$\Delta f/f \le \pm 0.3 \times 10^{-6}$
N	thermal shock	-55 to +105 °C tl = 30 min. relaxation 24 h	$\Delta f/f \le \pm 0.5 \times 10^{-6}$
Fc	vibration	10-2000 Hz total time 4 h/axis one octave/minute	$\Delta f/f \le \pm 1 \times 10^{-6}$
Ea	shock	50 g (1/2 sine) 6 directions 1 blow / direction	$\Delta f/f \le \pm 1 \times 10^{-6}$
Ta	solderability	235 ± 5 °C 5 s	good tinning
Tb	resistance to soldering heat	260 °C ± 5 °C max 10 s ± 1 s	<±1 x 10 ⁻⁶

	Data sheet	
status Product specification		
date of issue	March 1991	

9922 514 3 series Temperature compensated crystal oscillator Type TC 601

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing. The package has four connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

To be fixed.

APPLICATIONS

- Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	6000	20000	kHz
Δf/f	frequency stability in the temperature range: -20 to +70 °C	_	± 1	x 10−6
Top	operating temperature range	-20	+70	°C
V _{CC}	supply voltage range fixed value	5	12	V
ZL	output load range	50	1000	Ω
	mass	-	10	g

9922 514 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage range fixed value		5	-	12	V
loc	supply current		-	4	5	mA
fn	nominal frequency range		6000	-	20000	kHz
Δf/f	frequency tuning range		± 5	-	-	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) in the temperature range	$\Delta T_{op} = -20 \text{ to } +70 ^{\circ}\text{C}$	-	-	±1	x 10 ⁻⁶
Δf/f	ageing	per year		-	± 1	x 10 ⁻⁶
Δf/f	frequency variation due to load impedance variation	$\Delta Z_L = \pm 10\%$	-	-	± 0.2	x 10−6
Δf/f	frequency variation due to supply voltage variation	V _{CC} ± 5%	- · · · · · · · · · · · · · · · · · · ·		± 0.1	x 10 ⁻⁶
	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
V _{osc}	output voltage (RMS value)	$Z_L = 50 \Omega$ $Z_L = 1000 \Omega$	80 350	-	_	mV mV
T _{stg}	storage temperature range		-40	-	+85	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 4 and 5. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 5 x 10⁻⁶ remains available for correcting influences.

9922 514 3 series

MECHANICAL DATA

9922 514 3 series

PINNING

SYMBOL	PIN	DESCRIPTION
V _{CC}	1	supply voltage
V _{osc}	2	oscillator output
R _{ext}	4	external trimming resistor connected between pin 4 and 5
GND	5	ground (case)

Marking

Δf25 °C ..Hz value for frequency

adjustment

Freq. ...MHz nominal frequency

Type catalogue code

No. .../.... serial number / code

for week and year of

manufacture

Data sheet			
status	Product specification		
date of issue March 1991			

9922 514 1 series Temperature compensated crystal oscillator Type TC 602

DESCRIPTION

Temperature compensated crystal oscillators (TCXOs) comprise a quartz crystal oscillator, and a temperature-controlled circuit that compensates for frequency changes over the whole temperature range. The assembly is contained in a metal housing. The package has four connecting pins which are arranged to fit printed-circuit boards with a grid pitch of 2.54 mm.

TESTS AND REQUIREMENTS

To be fixed.

APPLICATIONS

- · Mobile telephony
- · Electronic timers
- · Electronic measuring equipment
- · Frequency synthesizers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	6000	20000	kHz
Δf/f	frequency stability in the temperature range: -20 to +70 °C	-	± 1	x 10 ⁻⁶
Top	operating temperature range	- 20	+70	°C
Vcc	supply voltage range	4.75	5.25	V
Z _L	output load (fan out)	-	3	LSTTL load
	mass	-	10	g

9922 514 1 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _C C	supply voltage range		4.75	5	5.25	V
Icc	supply current		-	4	6	mA
fn	nominal frequency range		6000		20000	kHz
Δf/f	frequency tuning range		± 5	-	-	x 10 ⁻⁶
Δf/f	frequency stability with respect to the nominal frequency (fn) in the temperature range	$V_{CC} = 5 \text{ V}$ $\Delta T_0 = -20 \text{ to } +70 \text{ °C}$	-	-	±1	x 10 ⁻⁶
Δf/f	ageing	per year	-	-	±1	x 10 ⁻⁶
Δf/f	frequency variation due to supply voltage variation	V _{CC} ± 5%	-	-	± 0.1	x 10 ⁻⁶
	phase noise	at 1 kHz	-	-	-130	dB _c /Hz
Z _L	output load (fan-out)		-	-	3	LSTTL load
T _{stg}	storage temperature range		-40	-	+85	°C

Note to electrical data

The nominal frequency is not guaranteed to occur at room temperature. The frequency can be shifted by connecting a variable resistor (0 to 10 k Ω) between pins 4 and 5. For optimum stability over the whole temperature range, the oscillator should be adjusted to deviate from the nominal frequency by the value given on the label against ' Δ f25 °C .. Hz'. After this adjustment, a trimming range of at least \pm 5 x 10⁻⁶ remains available for correcting influences.

March 1991 85

9922 514 1 series

MECHANICAL DATA

9922 514 1 series

PINNING

SYMBOL PIN **DESCRIPTION** Vcc 1 supply voltage 2 Vosc oscillator output 4 external trimming Rext resistor connected between pin 4 and 5 **GND** 5 ground (case)

Marking

Δf25 °C ...Hz value for frequency adjustment

FreqMHz nominal frequency
TypeHz catalogue code

No. .../.... serial number / code for week and year of manufacture

Data sheet			
status	Product specification		
date of issue March 1991			

9922 519 3 series Digital temperature compensated crystal oscillator (DTCXO)

DESCRIPTION

Digital temperature-compensated crystal oscillators (DTXCOs) comprise a quartz crystal oscillator, a quartz crystal temperature measuring device and an electronic compensation network that is digitally controlled. The assembly is contained in a metal housing that is dry-nitrogen-filled and hermetically sealed. The package has four connecting studs and can be mounted on a printed-circuit board and/or secured by four bolts (M3).

TESTS AND REQUIREMENTS

See 'Tests and requirements', Table 1.

FEATURES

- · Very high stability
- Low power consumption

APPLICATIONS

 Communication and measuring equipment which require high stability and low power consumption

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
fn	nominal frequency range	4 000	15 000	kHz
Δf/f	frequency stability in the temperature range: -40 to +85 °C	_	± 0.5	x 10 ⁻⁶
Top	operating temperature range	-40	+85	°C
Vcc	supply voltage	4.75	5.25	٧
Z _L	output load (fan-out):	-	10	LSTTL load
		-	10	TTL load HCMOS load
	mass	-	70	g

March 1991 88

Digital temperature compensated crystal oscillator (DTCXO)

9922 519 3 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating co	onditions			· .		
Vcc	supply voltage		4.75	5	5.25	V
lcc	supply current		-	15	20	mA
Z _L	output load (fan out)		-	-	10	LSTTL load
			-	-	10	TTL load HCMOS load
T _{op}	operating temperature range		-40	-	+85	°C
T _{stg}	storage temperature range		-55	-	+125	°C
Frequency cl	haracteristics					
fn	nominal frequency range		4000	-	15000	kHz
∆f/f	frequency stability with respect to the nominal frequency (f _n): in the temperature range		-	-	± 0.5	x 10 ⁻⁶
Δf/f	frequency deviation due to supply voltage variations	V _{CC} = 4.75 to 5.25	-	-	± 0.1	x 10 ⁻⁶
∆f/f	frequency ageing	during 10 years at 85 °C	-	-	± 1.5	x 10 ⁻⁶
	stabilization time: to reach a stability within 5 x 10 ⁻⁷		-	-	1	S
Δfn	frequency trimming range		±2	-	-	x 10 ⁻⁶
Output chara	octeristics					
	duty cycle	output level = 1.4 V	40	-	60	%

Note to the electrical data

For optimum stability over the whole temperature range, the oscillator should be adjusted at room temperature to a frequency which deviates from the nominal frequency by an amount indicated on the label, located on the oscillator.

Digital temperature compensated crystal oscillator (DTCXO)

9922 519 3 series

MECHANICAL DATA

Philips Components Product specification

Digital temperature compensated crystal oscillator (DTCXO)

9922 519 3 series

PINNING

SYMBOL	PIN	DESCRIPTION
GND	1	ground (case)
Vosc	23	oscillator output voltage
Vcc	45	supply voltage
V _{ref}	63	frequency adjustment reference voltage
VI	65	frequency adjustment input voltage
GND	67	ground (frequency adjustment only)
n.c.	71	not connected

Marking

Type	catalogue code
FreqMHz	nominal frequency
Δf25 °CHz	value for frequency adjustment
Range °C	temperature range
No/	serial number / code for week and year of

manufacture

Table 1 Tests and requirements

IEC68-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
D _b	accelerated damp- heat	+25 °C to +55 °C 6 cycles at >95% R.H.	$\Delta f/f \le \pm \ 0.2 \times 10^{-6}$
Ea	shock	50 g 6 v directions 1 blow/direction	$\Delta f/f \le \pm \ 0.2 \times 10^{-6}$
Fc	vibration	10-500-10 Hz acceleration 10 g 3 directions 30 min./direction	$\Delta f/f \le \pm \ 0.2 \times 10^{-6}$
Tb	resistance to soldering heat	260 °C ± 5 °C 10 +/-1 s	$\Delta f/f \le \pm \ 0.2 \times 10^{-6}$

Data sheet			
Objective specification			
March 1991			

9922 515 8 series Temperature sensoring oscillator (TSO)

DESCRIPTION

A TSO comprises a quartz crystal which is cut under a special angle. The frequency varies as a linear function of temperature. The temperature information is available as a number of pulses which changes with temperature, no analog-to-digital conversion is needed. The crystal and the oscillator are built in hybrid technology. The unit is encapsulated in a metal package which is filled with dry nitrogen and hermetically sealed. The unit has a pinning which is compatible with 14-pin DIL packages. Upon request the TSO can be supplied with a Master Reset input in order to minimize standby power consumption.

TESTS AND REQUIREMENTS

See 'Tests and requirements' To be fixed.

APPLICATION

- Temperature sensing devices in very accurate thermometers
- Temperature monitors in electronic systems

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
fn	nominal frequency range		0.25	-	750	kHz
T _{op}	operating temperature range		-40	-	+85	°C
TC	temperature coefficient range		-50	-	+85	x 10 ⁻⁶ /K
	output compatibility		-	HCMOS	T-	-
V _{CC}	supply voltage range		4.5	5.0	5.5	٧
lcc	supply current		-	2.5	-	mA

Objective specification

Temperature sensoring oscillator (TSO)

9922 515 8 series

ELECTRICAL DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating co	onditions					
Vcc	supply voltage		4.5	5.0	5.5	V
lcc	supply current	note 1	-	2.5	-	mA
T _{op}	operating temperature range		-40	25	+85	°C
ts	start-up time		-	2	-	ms
Frequency c	haracteristics					
f _n	nominal frequency range		0.25	-	750	kHz
TC	temperature coefficient range	note 2	-50	-	+85	x 10 ⁻⁶ /K
	linearity	note 3	-	1	-	%
t _{th}	thermal time constant		-	10	-	s
Output chara	acteristics					
V _{OH}	output voltage HIGH	V _{CC} = 4.5 V I _O = -4.0 mA	3.7	-		V
V _{OL}	output voltage LOW	V _{CC} = 4.5 V I _O = 4.0 mA	-	-	0.4	V
	duty cycle	V _{CC} / 2	45	-	55	%
	output load		-	-	50 3	pF TTL
Master Reset	(optional) A logic 1 on the MR input sto Current reduces to 0.1 mA.	ps the oscillator and sets the	output to the	e low state		
V _{IH}	input voltage HIGH		2.0	-	T-	V
V _{IL}	input voltage LOW			-	0.8	-
T _{stg}	storage temperature range		-55	1 4 2 2 2 3 3 3 3 3 3	+100	°C

Notes to the electrical data

- 1. Maximum value dependent on frequency and load
- 2. Choose value within range
- 3. Dependent on TC and Top range

Temperature sensoring oscillator (TSO)

9922 515 8 series

MECHANICAL DATA

PINNING

SYMBOL	PIN	DESCRIPTION
N/C or MR	1	not connected or master reset (optional)
GND	7	ground (case)
Vosc	8	oscillator output
Vcc	14	supply voltage

MARKING

frequency in kHz last five digits of catalogue code code for month and year of manufacture

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of seven series of handbooks:

INTEGRATED CIRCUITS

DISCRETE SEMICONDUCTORS

DISPLAY COMPONENTS

PASSIVE COMPONENTS*

PROFESSIONAL COMPONENTS**

MAGNETIC PRODUCTS*

LIQUID CRYSTAL DISPLAYS

The contents of each series are listed on pages iii to ix.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where application is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

- * Will replace the Components and materials (green) series of handbooks.
- ** Will replace the Electron tubes (blue) series of handbooks.

INTEGRATED CIRCUITS

code	handbook title
IC01	Radio, audio and associated systems Bipolar, MOS
IC02a/b	Video and associated systems Bipolar, MOS
IC03	ICs for Telecom; Subscriber sets, Cordless Telephones, Mobile/Cellular, Radio Pagers
IC04	HE4000B logic family CMOS
IC05	Advanced Low-power Schottky (ALS) Logic Series
IC06	High-speed CMOS; 74HC/HCT/HCU Logic family
IC07	Advanced CMOS logic (ACL)
Supplement to IC07	Advanced CMOS logic (ACL)
IC08	10/100K ECL Logic/Memory/PLD
IC09	TTL logic series
IC10	Memories MOS, TTL, ECL
IC11	Linear Products
IC12	I ² C-bus compatible ICs
IC13	Programmable Logic Devices (PLD)
IC14	Microcontrollers NMOS, CMOS
IC15	FAST TTL logic series
Supplement	
to IC15	FAST TTL logic series
IC16	CMOS integrated circuits for clocks and watches
IC17	ICs for Telecom;
IC18	Microprocessors and peripherals
IC19	Data communication products
IC20	8051-based 8-bit microcontrollers
IC23	Advanced BiCMOS interface logic

DISCRETE SEMICONDUCTORS

current code	new code	handbook title
S1	SC01	Diodes High-voltage tripler units
S2a	SC02	Power diodes
S2b	SC03	Thyristors and triacs
S3	SC04	Small-signal transistors
S4a	SC05	Low-frequency power transistors and hybrid IC power modules
S4b	SC06	High-voltage and switching power transistors
S5	SC07	Small-signal field-effect transistors
S6	SC08a	RF power bipolar transistors
	SC08b	RF power MOS transistors
	SC09	RF power modules
S7	SC10	Surface mounted semiconductors
S8b	SC12	Optocouplers
S9	SC13	PowerMOS transistors
S10	SC14	Wideband transistors and wideband hybrid IC modules
S11	SC15	Microwave transistors
S13	SC17	Semiconductor sensors

DISPLAY COMPONENTS

code	handbook title	
DC01	Colour display components	
	Colour TV Picture Tubes and Assemblies	
	Colour Monitor Tube Assemblies	
DC02	Monochrome monitor tubes and deflection units	
DC03	Television tuners, coaxial aerial input assemblies	
DC04	Loudspeakers	
DC05	Flyback transformers, mains transformers and general-purpose FXC assemblies	

PASSIVE COMPONENTS

current code	new code	handbook title	
C14	PA01	Electrolytic capacitors; solid and non-solid	
C11	PA02	Varistors, thermistors and sensors	
C12	PA03	Potentiometers and switches	
C7	PA04	Variable capacitors	
C22	PA05*	Film capacitors	
C15	PA06	Ceramic capacitors	
C9	PA07*	Piezoelectric quartz devices	
C13	PA08	Fixed resistors	
	PA11	Quartz oscillators	

^{*} Not yet issued with the new code in this series of handbooks.

PROFESSIONAL COMPONENTS

current	new code	handbook title
Т3	PC01	High-power klystrons and accessories
T5	PC02*	Cathode-ray tubes
T6	PC03*	Geiger-Müller tubes
T9	PC04	Photo multipliers
T10	PC05	Plumbicon camera tubes and accessories
T11	PC06	Circulators and Isolators
T12	PC07	Vidicon and Newvicon camera tubes and deflection units
T13	PC08	Image intensifiers
T15	PC09	Dry-reed switches
	PC11	Solid state image sensors and peripherals integrated circuits
Т9	PC12*	Electron multipliers

^{*} Not yet issued with the new code in this series of handbooks.

MAGNETIC PRODUCTS

current code	new code	handbook title	
C4 \ C5	MA01	Soft Ferrites	
C5 ∫	WAUT	5517 1 511165	
C16	MA02	Permanent magnet materials	
C19	MA03*	Piezoelectric ceramics	

^{*} Not yet issued with the new code in this series of handbooks.

LIQUID CRYSTAL DISPLAYS

current code	new code	handbook title		<u> </u>
S14	LCD01	Liquid Crystal Displays and driver ICs for LCDs		

Argentinat PHILIPS ARGENTINA S.A., Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-4261. Australia: PHILIPS COMPONENTS PTY Ltd, 11 Waltham Street,

ARTARMON, N.S.W. 2064, Tel. (02) 439 3322

Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN, Tel. (0222) 60 101-820

Belgium: N.V PHILIPS PROF. SYSTEMS – Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 52 56 111.

Brazil: PHILIPS COMPONENTS (Active Devices & LCD) Av. das Nacoes Unidas, 12495-SAO PAULO-SP, CEP 04578, P.O. Box 7383, Tel. (011) 534-2211, Fax. 011 534 7733.

PHILIPS COMPONENTS (Passive Devices & Materials) Av. Francisco Monteiro 702, RIBEIRAO PIRES-SP, CEP 09400, Tel. (011) 459-8211.

Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161

(IC Products) PHILIPS COMPONENTS - Signetics Canada LTD., 1 Eva Road, Suite 411, ETOBICOKE, Ontario, M9C 4Z5, Tel. (416) 626-6676

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 77 38 16

Colombia: IPRELENSO LTDA., Carrera 21 No. 56-17, BOGOTA. D.E., P.O. Box 77621, Tel. (01) 249 7624.

Denmark: PHILIPS COMPONENTS A/S, Prags Boulevard 80, PB1919, DK-2300 COPENHAGEN S, Tel. 01-54 11 33

Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-2630 ESPOO, Tel. 358-0-50261.

France: PHILIPS COMPOSANTS, 117 Quai du Président Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex,

Tel. (01) 40938000. Fax. 01 40938692.

Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Fax. 040 329 69 12.

Greece: PHILIPS HELLENIQUE S.A., Components Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894911.

Hong Kong: PHILIPS HONG KONG LTD., Components Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-42 45 121. Fax. 0 480 69 60.

India: PEICO ELECTRONICS & ELECTRICALS LTD Components Dept., Shivsagar Estate 'A'Block, P.O. Box 6598, 254-D Dr. Annie Besant Rd., BOMBAY – 40018, Tel. (022) 49 21 500-49 21 515. Fax. 022 494 190 63.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 51 79 95

Ireland: PHILIPS ELECTRONICS (IRELAND) LTD. Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355

Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1. Fax. 02 675 226 42

Japan: PHILIPS JAPAN LTD,. Components Division, Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,

Tel. (03) 813-3740-5028. Fax. 03 813 3740 0570. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD. Components Division, Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.

Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div., 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 73 45 511

Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHI HUA HUA 32340 MEXICO Tel. (16) 18-67-01/02

Netherlands: PHILIPS NEDERLAND B.V., Marktgroep Philips Components, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749.

New Zea'

AUC

Norway: NORSK A/S PHILIPS, Philips Components, Box 1,

Manglerud 0612, OSLO, Tel. (02) 74 10 10. **Pakistan:** PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 72 57 72.

Peru: CADESA, Carretera Central 6.500, LIMA 3, Apartado 5612, Tel. 51-14-35 00 59

Philippines: PHILIPS ELECTRICAL LAMPS INC. Components Div., 106 Valero St. Salcedo Village, P.O. Box 911, MAKATI, Metro MANILA, Tel. (63-2) 810-0161. Fax. 632 817 3474

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 6831 21.

Singapore: PHILIPS SINGAPORE, PTE LTD., Components Div.

Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000. South Africa: S.A. PHILIPS PTY LTD., Components Division, JOHANNESBURG 2000, P.O. Box 7430. Fax.011 8893191

Spain: PHILIPS COMPONENTS, Balmes 22, 08007 BARCELONA,

Tel. (03)301 63 12. Fax. 03 301 42 43.

Sweden: PHILIPS COMPONENTS, A.B., Tegeluddsvägen 1, S-11584 STOCKHOLM, Tel. (0)8-78 21 000.

Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 488 22 11.

Taiwan: PHILIPS TAIWAN LTD., 581 Min Sheng East Road, P.O. Box 22978, TAIPEI 10446, Taiwan, Tel. 886-2-5097666. Fax. 886 2 500 58 99.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel (02) 233-6330-9

Turkey: TÜRK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (01) 179 27 70.

United Kingdom: PHILIPS COMPONENTS LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (071) 580 6633. Fax. 071 436 21 96.

United States: (Colour picture tubes - Monochrome & Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963, ANN ARBOR Michigan 48106, Tel. 313/996-9400. Fax. 313 761 2886. (IC Products) PHILIPS COMPONENTS – Signetics, 811 East Argues Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.

(Passive Components, Discrete Semiconductors, Materials and Professional Components & LCD) PHILIPS COMPONENTS, Discrete Products Division, 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, Florida 33404, Tel. (407) 881-3200.

Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) 70-4044.

Venezuela: MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 241 7509. Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD. 62 Mutare Road, HARARE, P.O. Box 994, Tel. 47211.

For all other countries apply to: Philips Components Division Strategic Accounts and International Sales, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-723753

© Philips Export B.V. 1991

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under natent- or other industrial or intellectual property rights.

